
Page 6 FoxRockX May 2013

In my last article, I showed how to add your own
tools to Thor. This time, I look at how you can pro-
vide options for Thor Tools, so that users can cus-
tomize them.
The VFPX tool, Thor, is a container for developer
tools. It comes with dozens of tools, but also allows
you to add others. Not surprisingly, when so many
tools are available to lots of people, there’s dis-
agreement about how some tools should operate.

For example, one of the tools that comes with
Thor is Comment Highlighted Text. As the name
suggests, it turns whatever lines are currently high-
lighted into comment lines. It also adds a comment

before those lines. By default, that comment says
"Removed" and the date. But it’s easy to see that
different developers might want different versions
of that comment.

Thor allows you to set the comment to use. The
Options tab of the Thor Confi guration form (shown
in Figure 1) lets you specify a string to use. (As the
fi gure shows, the string is run through textmerge
fi rst.)

So, if you prefer the header comment for
removed code to, say, include your initials, you
can just add them to the string. Figure 2 shows
the Options tab after I modifi ed the string to
include my initials and some additional text.

Give Thor Tools Options
The framework for specifying and using options for Thor Tools is elegant and easy
to use.

Tamar E. Granor, Ph.D.

F igure 1. The Options tab of the Thor Confi guration dialog lets you specify the string to use as a header comment when
you use the Comment Highlighted Text tool.

May 2013 FoxRockX Page 7

The architecture for specifying options for
Thor Tools is quite elegant and makes it easy to
add options to any tool. There are three elements
involved: defi ning an option, displaying an option
and accessing an option.

Viewing and editing Thor tools
Before we look at how to handle each of these ele-
ments, let me quickly review how you can see the
code for a Thor tool, and how you can customize it.

To open the code for an existing tool, start in
either the Launcher or the Confi guration form. In
either case, highlight the tool you’re interested in
(in the Confi guration form, on the Tool Defi nitions
page) and click the Edit Tool button at the bottom
of the right pane.

The Edit File dialog, shown in Figure 3 appears.
If you just want to look at the code, click the View
this fi le in Read-Only mode button. If you want to
customize the tool, click the Copy this fi le to folder
'My Tools' and edit it button. In the second case,
a copy of the tool code opens; when you save it,
it‘s stored in the My Tools folder of your Thor
installation, and from that point on, when you
use the tool, the copy in My Tools is used. This
allows you to make changes while retaining the
original, and means that if the tool is updated in

the Thor Repository, when you update Thor, your
customized copy remains intact (though, of course,
it won’t refl ect the updates from the Repository).

In most cases, all the elements for specifying
options appear in the tool code. You can follow
along the examples in the rest of this article by
opening the code for the Comment Highlighted
Text tool (in read-only mode).

Defi ning options
The fi rst step in adding options is to tell the tool
itself about them. Two parts are needed to do so.

In the top portion of the tool defi nition, add two
properties, OptionClasses and OptionTool. Option-
Tool indicates what tool should be selected on the
Thor Options page when the user clicks the Options
button for the tool; having a value assigned to this
property also determines whether the Options but-
ton appears for the tool. The value in this property
is what appears in the left pane of the Options page.

OptionClasses is a comma-separated list of
names for classes that defi ne the individual options.
Listing 1 shows the two properties as they’re speci-
fi ed for the Comment Highlighted Text tool. (As
with most of the listings in this article, the code has
been slightly reformatted to fi t.)

Fi gure 2. Modifying the header comment on the Options tab changes what the Comment Highlighted Text tool inserts.

Page 8 FoxRockX May 2013

Lis ting 1. To specify options for a tool, add two propeties to the
tool defi nition.
.OptionClasses = 'clsAddComments, ' + ;
 'clsToggleComments'
.OptionTool = 'Comment Highlighted Text'

Next, you need to defi ne each of the classes
specifi ed in the OptionClasses property. You do so
by adding them to the tool’s PRG fi le, subclassing
each from the Custom class.

Each option class needs four properties, set as
follows:

• Tool is the name of the tool, that is, the
same value as the OptionTool property.

• Key is a unique name (within the tool)
for this option. It’s used in looking up the
option value.

• Value is the default value for the option.
It can be character, numeric, logical or
date.

• EditClassName is the name of a contain-
er class that contains the instructions for
displaying the options for this tool in the
Thor Confi guration dialog.

The value of EditClassName should be the
same for all options for a single tool.

Listing 2 shows the option class defi nitions for
the Comment Highlighted Text tool. The constants
they reference appear at the top of the code for the
tool and are shown in Listing 3.

Lis ting 2. Create a custom class to defi ne each option for a
tool.
Defi ne Class clsAddComments As Custom

 Tool = ccXToolName
 Key = ccCommentText
 Value = '* Removed <<Date()>>'
 EditClassName = ccContainerClassName

Enddefi ne

Defi ne Class clsToggleComments As Custom

 Tool = ccXToolName
 Key = ccToggleComments
 Value = .F.
 EditClassName = ccContainerClassName

Enddefi ne

Lis ting 3. The tools that come with Thor use constants to make
it easier to manage the tool names and option keys.
#Defi ne ccContainerClassName ;
 'clsCommentSelectedText'
#Defi ne ccXToolName ;
 'Comment Highlighted Text'

#Defi ne ccCommentText ;
 'Comment Highlighted Text'
#Defi ne ccToggleComments ;
 'Toggle Comments'

Displaying options
The next step in providing options is indicating
how to display them. All options are shown on the
Options tab of the Thor Confi guration form (Figure
4.). The left pane shows the list of tools for which
options are available. Choose a tool in that list and
its options appear in the right pane. Thor and Thor
News are always listed fi rst, then other tools in
 alphabetical order.

Fig ure 3. This dialog appears when you click the Edit Tool button in either the Launcher or the Confi guration form.

May 2013 FoxRockX Page 9

Options use the VFPX Dynamic Forms project
to specify layout. Dynamic Forms lets you specify
form layout using a mark-up syntax that looks
something like property assignments. A complete
explanation of Dynamic Forms is beyond the scope
of this article. Fortunately, you can create option
pages for tools without knowing too much of it;
just model your code after the code used for exist-
ing tools.

To specify an options page, you add a defi nition
for the class that was referenced in the EditClassName
property of the individual option items. That class
needs code only in its Init method. In that code, you
instantiate a class called OptionRenderEngine that’s
built into Thor. Then you set the OptionRenderEngine‘s
cBodyMarkup property to the Dynamic Forms mark-
up needed for your options. Finally, you call the
OptionRenderEngine’s Render method.

Listing 4 shows the clsCommentSelectedText
class that’s part of the Comment Highlighted Text
tool. Note that the values for the Caption proper-
ties wrap here, but in the actual tool code, run on
a single line.

List ing 4. Displaying options for a Thor Tool relies on the
Dynamic Forms project.
Defi ne Class clsCommentSelectedText ;
 As Container

Procedure Init
 loRenderEngine = ;
 Execscript(_Screen.cThorDispatcher, ;
 'Class= OptionRenderEngine')

 Text To loRenderEngine.cBodyMarkup ;
 Noshow Textmerge

 .Class = 'Label'
 .Caption = 'Text to be inserted as a new

Figu re 4. The Options tab of the Thor Confi guration form shows the options for each tool that has them. Choose the tool in the left
pane to see its options in the right pane.

Page 10	 FoxRockX� May 2013

line before the first highlighted line. Passed
as a parameter to TextMerge. Must begin with
unique text so that it can be removed when un-
commenting.'
 .Width = 300
 .Left = 25
 .WordWrap = .T.
 |
 .Class = 'TextBox'
 .Width = 300
 .Left = 25
 .cTool = ccXToolName
 .cKey = ccCommentText
 |
 .Class = 'CheckBox'
 .Width = 300
 .Left = 25
 .WordWrap = .T.
 .Caption = 'Use tool "Comment Highlight-
ed Text" as a toggle? That is, if the high-
lighted text is already commented, remove the
comments?'
 .cTool = ccXToolName
 .cKey = ccToggleComments

 Endtext

 loRenderEngine.Render(This, ccXToolName)

Endproc

There are a few things to note in this code. First,
the class is subclassed from the base Container
class. All option display classes must be subclassed
from Container or a subclass of Container, to pro-
vide an object that Thor can simply drop onto the
Options page.

You separate specifications for individual con-
trols with the vertical bar ("|"). The code in Listing
4 specifies three controls: a label, a textbox and a
checkbox.

For each control, you use actual VFP properties
to indicate the layout. Two additional properties
are needed for those controls that map to option
values. cTool specifies the tool to which the option
applies; this is the same name you specify for the
OptionTool property in the top portion of the tool
definition. cKey is the key for the specific option;
this is the same as the Key property of the class that
defines the option.

For example, in Listing 4, both the textbox
and the checkbox have cTool set to 'Comment
Highlighted Text'. The textbox also has cKey set to
'Comment Highlighted Text', which is the key for
the option that determines the header comment,
while the checkbox has cKey set to 'Toggle
Comments', the key specified for the option that
determines whether this tool operates as a toggle.

Instantiation of OptionRenderEngine follows
the normal Thor style for instantiating classes pro-
vided with Thor. It uses a call to ExecScript() pass-
ing _Screen.cThorDispatcher as the first parameter
and a description of what to do as the second.

Accessing an option
The final part of specifying options is accessing
them in tool code, so that their values affect the
behavior of the tool. This part turns out to be the
easiest of all, because Thor has the mechanism built
right in.

To get the value of an option, you use an
ExecScript() call in the form shown in Listing 5. You
pass the key for the option (as specified in the Key
property of the class that defines the option) and
the tool name (as specified in the OptionTool prop-
erty of the tool definition) to indicate which option
you want to retrieve.

Listing 5. To retrieve the current value of an option, pass the
appropriate parameters to an ExecScript() call to _Screen.
cThorDispatcher.
uOptionValue = EXECSCRIPT(;
 _Screen.cThorDispatcher, ;
 "Get Option =", ;
 <Option key>, ;
 <Tool name>)

Listing 6 and Listing 7 show code from the
Comment Highlighted Text tool that retrieves the
two options for that tool and applies them. Note
that the Comment Highlighted Text option is char-
acter, while the Toggle Comments option is logical.
Thor handles the different data types transparently.

Listing 6. This code retrieves the header comment to use for
the Comment Highlighted Text tool, and applies textmerge to
get the exact string to insert.
lcNewLineText = Textmerge(ExecScript(;
 _Screen.cThorDispatcher, ;
 "Get Option=", ;
 'Comment Highlighted text', ;
 'Comment Highlighted text'))

Listing 7. This code retrieves the value of the Toggle
Comments option and then applies it to determine whether to
comment or uncomment the highlighted text.
If ExecScript(_Screen.cThorDispatcher, ;
 "Get Option=", ;
 'Toggle Comments', ;
 'Comment Highlighted text') ;
 And Left(Ltrim(lcClipText,' ', chr[9]), ;
 Len(lcCommentString)) == ;
 lcCommentString
 loCommentText.RemoveComments(lcClipText, ;
 lcNewLineText)
Else
 loCommentText.AddComments(lcClipText, ;
 lcNewLineText)
Endif

Invisible options
The Thor options mechanism can also be used to
track values behind the scenes, without providing
any user interface. The Thor "Get Option=" call has
a corresponding "Set Option=" call that allows you
to store a value for future reference.

May 2013	 FoxRockX� Page 11

For example, Thor News stores the date it was
last displayed, using the code in Listing 8. The code
in Listing 9 retrieves the stored date to determine
whether it’s time to show it.

Listing 8. This code in the Thor News tool stores the date that
Thor News was last displayed.
ExecScript(_Screen.cThorDispatcher, ;
 "Set Option=", ;
 ccDateLastSeen, ccTool, Date())

Listing 9. This code in the Thor News tool retrieves the date
Thor News was last displayed.
ldDataLastSeen = ExecScript(;
 _Screen.cThorDispatcher, ;
 "Get Option=", ccDateLastSeen, ccTool)

This mechanism means that Thor tools can save
information between runs without the tool’s author
having to come up with a way to do so.

Plenty of examples
One of the great things about Thor is that it comes
with lots of sample code, all the tools that come with
it. So, if my explanation of Thor options, along with
the example of the Comment Highlighted Text tool,
isn’t sufficient, you can look at almost any Thor tool

that has options to see more examples. (Some of the
more complex tools use other approaches to show-
ing their options.)

In addition, Thor’s model makes the test cycle
very short, so you can try adding an option, see
whether you got it right and make changes very
easily.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numerous
Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of nearly
a dozen books including the award winning Hacker’s
Guide to Visual FoxPro, Microsoft Office Automation
with Visual FoxPro and Taming Visual FoxPro’s SQL.
Her latest collaboration is VFPX: Open Source Treasure
for the VFP Developer. Her books are available from
Hentzenwerke Publishing (www.hentzenwerke.com). Tamar
was a Microsoft Support Most Valuable Professional from
the program's inception in 1993 until 2011. She is one of
the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

